3.240 \(\int \frac{x^2}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx\)

Optimal. Leaf size=337 \[ \frac{\left (\sqrt{c} d-\sqrt{a} e\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )}-\frac{\left (\sqrt{c} d-\sqrt{a} e\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )}-\frac{\sqrt{d} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{a e^2+c d^2}-\frac{\left (\sqrt{a} e+\sqrt{c} d\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )}+\frac{\left (\sqrt{a} e+\sqrt{c} d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )} \]

[Out]

-((Sqrt[d]*Sqrt[e]*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(c*d^2 + a*e^2)) - ((Sqrt[c]*d +
 Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(1/4)*c^(1/4)*
(c*d^2 + a*e^2)) + ((Sqrt[c]*d + Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/
4)])/(2*Sqrt[2]*a^(1/4)*c^(1/4)*(c*d^2 + a*e^2)) + ((Sqrt[c]*d - Sqrt[a]*e)*Log[
Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(1/4)*c^(1/4)*(
c*d^2 + a*e^2)) - ((Sqrt[c]*d - Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)
*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(1/4)*c^(1/4)*(c*d^2 + a*e^2))

_______________________________________________________________________________________

Rubi [A]  time = 0.519013, antiderivative size = 337, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364 \[ \frac{\left (\sqrt{c} d-\sqrt{a} e\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )}-\frac{\left (\sqrt{c} d-\sqrt{a} e\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )}-\frac{\sqrt{d} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{a e^2+c d^2}-\frac{\left (\sqrt{a} e+\sqrt{c} d\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )}+\frac{\left (\sqrt{a} e+\sqrt{c} d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]  Int[x^2/((d + e*x^2)*(a + c*x^4)),x]

[Out]

-((Sqrt[d]*Sqrt[e]*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(c*d^2 + a*e^2)) - ((Sqrt[c]*d +
 Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(1/4)*c^(1/4)*
(c*d^2 + a*e^2)) + ((Sqrt[c]*d + Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/
4)])/(2*Sqrt[2]*a^(1/4)*c^(1/4)*(c*d^2 + a*e^2)) + ((Sqrt[c]*d - Sqrt[a]*e)*Log[
Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(1/4)*c^(1/4)*(
c*d^2 + a*e^2)) - ((Sqrt[c]*d - Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)
*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(1/4)*c^(1/4)*(c*d^2 + a*e^2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 91.7333, size = 304, normalized size = 0.9 \[ - \frac{\sqrt{d} \sqrt{e} \operatorname{atan}{\left (\frac{\sqrt{e} x}{\sqrt{d}} \right )}}{a e^{2} + c d^{2}} - \frac{\sqrt{2} \left (\sqrt{a} e - \sqrt{c} d\right ) \log{\left (- \sqrt{2} \sqrt [4]{a} c^{\frac{3}{4}} x + \sqrt{a} \sqrt{c} + c x^{2} \right )}}{8 \sqrt [4]{a} \sqrt [4]{c} \left (a e^{2} + c d^{2}\right )} + \frac{\sqrt{2} \left (\sqrt{a} e - \sqrt{c} d\right ) \log{\left (\sqrt{2} \sqrt [4]{a} c^{\frac{3}{4}} x + \sqrt{a} \sqrt{c} + c x^{2} \right )}}{8 \sqrt [4]{a} \sqrt [4]{c} \left (a e^{2} + c d^{2}\right )} - \frac{\sqrt{2} \left (\sqrt{a} e + \sqrt{c} d\right ) \operatorname{atan}{\left (1 - \frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}} \right )}}{4 \sqrt [4]{a} \sqrt [4]{c} \left (a e^{2} + c d^{2}\right )} + \frac{\sqrt{2} \left (\sqrt{a} e + \sqrt{c} d\right ) \operatorname{atan}{\left (1 + \frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}} \right )}}{4 \sqrt [4]{a} \sqrt [4]{c} \left (a e^{2} + c d^{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2/(e*x**2+d)/(c*x**4+a),x)

[Out]

-sqrt(d)*sqrt(e)*atan(sqrt(e)*x/sqrt(d))/(a*e**2 + c*d**2) - sqrt(2)*(sqrt(a)*e
- sqrt(c)*d)*log(-sqrt(2)*a**(1/4)*c**(3/4)*x + sqrt(a)*sqrt(c) + c*x**2)/(8*a**
(1/4)*c**(1/4)*(a*e**2 + c*d**2)) + sqrt(2)*(sqrt(a)*e - sqrt(c)*d)*log(sqrt(2)*
a**(1/4)*c**(3/4)*x + sqrt(a)*sqrt(c) + c*x**2)/(8*a**(1/4)*c**(1/4)*(a*e**2 + c
*d**2)) - sqrt(2)*(sqrt(a)*e + sqrt(c)*d)*atan(1 - sqrt(2)*c**(1/4)*x/a**(1/4))/
(4*a**(1/4)*c**(1/4)*(a*e**2 + c*d**2)) + sqrt(2)*(sqrt(a)*e + sqrt(c)*d)*atan(1
 + sqrt(2)*c**(1/4)*x/a**(1/4))/(4*a**(1/4)*c**(1/4)*(a*e**2 + c*d**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.266186, size = 232, normalized size = 0.69 \[ \frac{\sqrt{2} \left (\left (\sqrt{c} d-\sqrt{a} e\right ) \left (\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )-\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )\right )-2 \left (\sqrt{a} e+\sqrt{c} d\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt{a} e+\sqrt{c} d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )\right )-8 \sqrt [4]{a} \sqrt [4]{c} \sqrt{d} \sqrt{e} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{8 \sqrt [4]{a} \sqrt [4]{c} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]  Integrate[x^2/((d + e*x^2)*(a + c*x^4)),x]

[Out]

(-8*a^(1/4)*c^(1/4)*Sqrt[d]*Sqrt[e]*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + Sqrt[2]*(-2*(S
qrt[c]*d + Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*(Sqrt[c]*d + S
qrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + (Sqrt[c]*d - Sqrt[a]*e)*(Log
[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1
/4)*c^(1/4)*x + Sqrt[c]*x^2])))/(8*a^(1/4)*c^(1/4)*(c*d^2 + a*e^2))

_______________________________________________________________________________________

Maple [A]  time = 0.01, size = 351, normalized size = 1. \[{\frac{e\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ) }+{\frac{e\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\sqrt [4]{{\frac{a}{c}}}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ) }+{\frac{e\sqrt{2}}{8\,a{e}^{2}+8\,c{d}^{2}}\sqrt [4]{{\frac{a}{c}}}\ln \left ({1 \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ) }+{\frac{d\sqrt{2}}{8\,a{e}^{2}+8\,c{d}^{2}}\ln \left ({1 \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{d\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{d\sqrt{2}}{4\,a{e}^{2}+4\,c{d}^{2}}\arctan \left ({\sqrt{2}x{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-{\frac{de}{a{e}^{2}+c{d}^{2}}\arctan \left ({ex{\frac{1}{\sqrt{de}}}} \right ){\frac{1}{\sqrt{de}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2/(e*x^2+d)/(c*x^4+a),x)

[Out]

1/4/(a*e^2+c*d^2)*e*(1/c*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*x+1)+1/4/
(a*e^2+c*d^2)*e*(1/c*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*x-1)+1/8/(a*e
^2+c*d^2)*e*(1/c*a)^(1/4)*2^(1/2)*ln((x^2+(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2))
/(x^2-(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2)))+1/8/(a*e^2+c*d^2)*d/(1/c*a)^(1/4)*
2^(1/2)*ln((x^2-(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2))/(x^2+(1/c*a)^(1/4)*x*2^(1
/2)+(1/c*a)^(1/2)))+1/4/(a*e^2+c*d^2)*d/(1/c*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/
c*a)^(1/4)*x+1)+1/4/(a*e^2+c*d^2)*d/(1/c*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)
^(1/4)*x-1)-e*d/(a*e^2+c*d^2)/(d*e)^(1/2)*arctan(x*e/(d*e)^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((c*x^4 + a)*(e*x^2 + d)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.32268, size = 1, normalized size = 0. \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((c*x^4 + a)*(e*x^2 + d)),x, algorithm="fricas")

[Out]

[-1/4*((c*d^2 + a*e^2)*sqrt(-(2*d*e + (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-
(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d
^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))*l
og(-(c*d^2 - a*e^2)*x + (a*c*d^2*e - a^2*e^3 - (a*c^3*d^5 + 2*a^2*c^2*d^3*e^2 +
a^3*c*d*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^
6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))*sqrt(-(2*d*e + (c^2
*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5
*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/
(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))) - (c*d^2 + a*e^2)*sqrt(-(2*d*e + (c^2*d^4
+ 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8
+ 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*
d^4 + 2*a*c*d^2*e^2 + a^2*e^4))*log(-(c*d^2 - a*e^2)*x - (a*c*d^2*e - a^2*e^3 -
(a*c^3*d^5 + 2*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a
^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 +
 a^5*c*e^8)))*sqrt(-(2*d*e + (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4
- 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 +
4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))) + (c*d^2
+ a*e^2)*sqrt(-(2*d*e - (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a
*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4
*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))*log(-(c*d^2 - a
*e^2)*x + (a*c*d^2*e - a^2*e^3 + (a*c^3*d^5 + 2*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*s
qrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*
c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))*sqrt(-(2*d*e - (c^2*d^4 + 2*a*c*d
^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c
^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a
*c*d^2*e^2 + a^2*e^4))) - (c*d^2 + a*e^2)*sqrt(-(2*d*e - (c^2*d^4 + 2*a*c*d^2*e^
2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^
6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^
2*e^2 + a^2*e^4))*log(-(c*d^2 - a*e^2)*x - (a*c*d^2*e - a^2*e^3 + (a*c^3*d^5 + 2
*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5
*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))*
sqrt(-(2*d*e - (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^
2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*
e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))) - 2*sqrt(-d*e)*log((e*x
^2 - 2*sqrt(-d*e)*x - d)/(e*x^2 + d)))/(c*d^2 + a*e^2), -1/4*((c*d^2 + a*e^2)*sq
rt(-(2*d*e + (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2
+ a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^
6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))*log(-(c*d^2 - a*e^2)*x + (
a*c*d^2*e - a^2*e^3 - (a*c^3*d^5 + 2*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*sqrt(-(c^2*d
^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4
 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))*sqrt(-(2*d*e + (c^2*d^4 + 2*a*c*d^2*e^2 + a^
2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2
+ 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2
+ a^2*e^4))) - (c*d^2 + a*e^2)*sqrt(-(2*d*e + (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4
)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a
^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2
*e^4))*log(-(c*d^2 - a*e^2)*x - (a*c*d^2*e - a^2*e^3 - (a*c^3*d^5 + 2*a^2*c^2*d^
3*e^2 + a^3*c*d*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^
2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))*sqrt(-(2*d*
e + (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4
)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c
*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))) + (c*d^2 + a*e^2)*sqrt(-(2*d*e - (
c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*
c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)
))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))*log(-(c*d^2 - a*e^2)*x + (a*c*d^2*e - a^
2*e^3 + (a*c^3*d^5 + 2*a^2*c^2*d^3*e^2 + a^3*c*d*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2
*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d
^2*e^6 + a^5*c*e^8)))*sqrt(-(2*d*e - (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(
c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^
4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))) -
 (c*d^2 + a*e^2)*sqrt(-(2*d*e - (c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d
^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4
 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d^4 + 2*a*c*d^2*e^2 + a^2*e^4))*log(-(c
*d^2 - a*e^2)*x - (a*c*d^2*e - a^2*e^3 + (a*c^3*d^5 + 2*a^2*c^2*d^3*e^2 + a^3*c*
d*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 + 4*a^2*c^4*d^6*e^2
+ 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))*sqrt(-(2*d*e - (c^2*d^4 +
 2*a*c*d^2*e^2 + a^2*e^4)*sqrt(-(c^2*d^4 - 2*a*c*d^2*e^2 + a^2*e^4)/(a*c^5*d^8 +
 4*a^2*c^4*d^6*e^2 + 6*a^3*c^3*d^4*e^4 + 4*a^4*c^2*d^2*e^6 + a^5*c*e^8)))/(c^2*d
^4 + 2*a*c*d^2*e^2 + a^2*e^4))) + 4*sqrt(d*e)*arctan(e*x/sqrt(d*e)))/(c*d^2 + a*
e^2)]

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2/(e*x**2+d)/(c*x**4+a),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.282283, size = 454, normalized size = 1.35 \[ -\frac{\sqrt{d} \arctan \left (\frac{x e^{\frac{1}{2}}}{\sqrt{d}}\right ) e^{\frac{1}{2}}}{c d^{2} + a e^{2}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} a c e + \left (a c^{3}\right )^{\frac{3}{4}} d\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} a c e + \left (a c^{3}\right )^{\frac{3}{4}} d\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} a c e - \left (a c^{3}\right )^{\frac{3}{4}} d\right )}{\rm ln}\left (x^{2} + \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} - \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} a c e - \left (a c^{3}\right )^{\frac{3}{4}} d\right )}{\rm ln}\left (x^{2} - \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} a c^{3} d^{2} + \sqrt{2} a^{2} c^{2} e^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((c*x^4 + a)*(e*x^2 + d)),x, algorithm="giac")

[Out]

-sqrt(d)*arctan(x*e^(1/2)/sqrt(d))*e^(1/2)/(c*d^2 + a*e^2) + 1/2*((a*c^3)^(1/4)*
a*c*e + (a*c^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1
/4))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) + 1/2*((a*c^3)^(1/4)*a*c*e + (a*c
^3)^(3/4)*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2
)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) + 1/4*((a*c^3)^(1/4)*a*c*e - (a*c^3)^(3/4)*d)
*ln(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^
2*e^2) - 1/4*((a*c^3)^(1/4)*a*c*e - (a*c^3)^(3/4)*d)*ln(x^2 - sqrt(2)*x*(a/c)^(1
/4) + sqrt(a/c))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2)